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Abstract

We propose an algorithm to perform the Weighted Model Counting on CNFs, with
time complexity being exponential only in the treewidth of the primal graph of the
CNF. Our work is a generalization of an existing Model Counting technique.

1 Introduction

A family of 3 algorithms for solving #SAT was proposed in [3]. These algorithms are
bounded by the treewidth of 3 types of trees — primal, dual, and incidence trees. In this
write up, we generalize one of these techniques to perform Weighted Model Counting, with
the same upper bound. Here, we provide a detailed descritpion of an algorithm based on the
primal tree of the CNF. The claimed complexity for the model counting using primal graph
in [3] is given by

O(2" k1 dNy)

where k1, N; denote the width & number of nodes of the tree decomposition, and d denotes
the 'maximum number of occurrences over all variables’ [3]. Our time-complexity stays the
same asymptotically.

2 Preliminaries

We will breifly go throguh the necessary definitions. First, we will use the term tree
decomposition in its regular sense. We will also need the nice tree decomposition, which
is defined as follows. For a graph G, a triple (T, x,r) is a nice tree decomposition if (T, x) is
a tree decomposition, tree T is rooted at node r, and the following three conditions hold [2]:

1. Every node of T has at most 2 children.



2. If anode t of T has 2 children ¢y, t5, then x (1) = x(t2) = x(t) . We call ¢ a join node
in this case.

3. If a node t has exactly one child ¢, then exactly one of the following condition holds:

e |x(t)] = |x(t')| + 1 and x(t') C x(t); in this case we call t an introduce node
o [x(t)] = |x(t)] —1 and x(t) C x(¥); in this case we call t a forget node

It is known that we can efficiently transform any tree decomposition of treewidth k& and n
nodes into a nice tree decomposition of treewidth at most k& and at most 4n nodes [2].

3 The algorithm

3.1 Description and proofs

Suppose we have a CNF F'| its primal graph G, and a nice tree decomposition of G - (T, x, ).
The trick is to use dynamic programming approach and accumulate knowledge about model
count ’so far’ in the special tables accosiated with each tree node. In particular, they give
the following definition.

Pick a node t from a nice tree decomposition. For each truth assignment « : x(t) — {0, 1},
we define N(t,«) as the set of truth assignments? 7 : V; — {0,1} , for which the following
two conditions hold:

1. 7(z) = a(x) for all variables = € x(t).
2. There is no clause in F falsified by 7.

The paper denotes |N(t, «)| as n(t, «). Thus, for each node ¢, we can create a table M; with
Ix(t)|+1 columns and 2X®! rows, each row representing an truth assignment for variables in ¢.

In our work, we adjust these definitions. In particular, we denote by n(t, ) the sum of
weights W (t) of all truth assignments that satisfy the two properties above, only considering
the variables in V;. Also, since F' is a WBF, we assign the weights to the literals.

We will follow an example throughout the paper. Let’s FF = C; A Cy A C5 A Cy, where:

e C1=TVyVz

o CQZQ\/E
e U5=yVs
e Cy=2zVp

IFor a node t in a tree decomposition of a graph G, x(t) denotes the set of vertices in G corresponding
tot
2V, denotes the set of vertices of G that appear in the subtree of T rooted at t.



Figure 1: Primal graph of F
@

7l
Figure 2: Nice tree decomposition of the primal graph for F

We define the weights as follows:

w(z) =0.1,w(y) =0.2,w(z) =0.3,w(s) =04, w(p) =0.5
Correspondingly,

w(Z) = 0.9,w(y) = 0.8,w(z) =0.7,w(s5) = 0.6,w(p) = 0.5

We will consider a nice tree decomposition for the primal graph of F, as in Figures 1 and
2.

For example, consider the leaf node A = {y, z, s} (bottom left). Since it is a leaf node,
then for each truth assignment o, N(A, ) is either 0 or 1. For those assignments that do not
violate any clauses of F', we set n(A, a) to the product of corresponding weights of variables
Y, 2z, 8. In our example case, we can draw the table My, as in Figure 3.

As we can see, it is easy to fill in the tables M; for the leaf nodes. Indeed, it takes time
exponential in k, where k is the treewidth of our decomposition 7. The idea is to propagate
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Figure 3: Table for the leaf node {y,z,s}

the knowledge up through this tree, and it turns out this can be done efficiently not only
for model counting, but for weighted model counting as well. Once we have filled the table

corresponding to the root in 7', simply summing up all values n(r, ), for all a;, will give us
the desired WMC.

To propagate the tree upwards, we prove three lemmas. Namely we show how to fill in

the values in the tables of join, forget, and introduce nodes. The first lemma is the most
important one.

Lemma 1. Suppose t is a join node with children t, and ty. Then, for each truth assignment
a on vertices in x(t), the following holds:

n(ty, a)n(ts, )

[Loex wla(®))

Proof. The main chunk of the proof is done in [3], so we’ll not repeat it. The takeaway from
the proof is that, 'merging’ any valid assignment 71 from N (¢, «), any valid assignment 7,
from N (t2, ) yields a valid assignment 7 € N(t, «), and all valid assignments 7 € N(¢, «)
are obtained precisely this way. Denote Fyr = [],cy; @ w(7(v)).

n(t,a) =




By definition, for any a3

n(ta)= Y JJuww) (1)

TEN (t,a) vEV;

= > ] wE@)P. (2)

TEN (t,a) vEX(t)

TEN (t,a) vEX(t)

= [ wlew) > P (4)

vex(t) TEN (t,)
Similarly,
n(tya)= [ wl@) > P, (5)
vex(t1) TEN (t1,0)
n(ty,a) =[] wla@) > Pus (6)
vex(t2) TEN (t2,a)
and

n(ty, a)n(ts, o
H(vex(t))w((a(v))) =[] wa@) >, Pur D Pus (7)

veEx(t2) TEN (t2,0) TEN (t1,c)
Now, the key observation is that
Z PtT - Z Ptz,T Z Pt1,7' (8)
TEN(t,0) TEN (t2,0) TEN (t1,0)
which, after plugging in (4), completes the proof. ]

Lemma 2. Suppose t is a forget node with child t1, and v is the ’forgotten’ variable. Then,
for each truth assignment

n(t,a) =n(t;,aUv — 0]) +n(ty,aU v — 1))
The proof is almost exactly the same as in [3], and so we’ll not repeat it for the sake of
space.

Lemma 3. Suppose t is an introduce node with child t,, and v is the “introduced’ variable.
Then, for each truth assignment c:

n(ta) = {O. if a falsifies some C' € F
y &) = (

n(t,a)w(a(v)), otherwise

Proof. This lemma is proved exacly as in the original paper. The idea is that introducing
a variable should not falsify the ’old’ assignment «. If it does not, we multiply our current
n(t1, «) by the weight of the introduced literal. If it does, we cannot consider this 7 anymore.

O

3In the equations below, we overload the definition of & and 7 to also mean the corresponding literal over
the variable




3.2 Complexity

Note that we only have to compute product of variables in the join nodes as we propagate
upwards, and that’s the only distinction with the original algorithm in terms of speed. Such
overhead is neglectible in our setting, since w can be consulted in constant time; we also
have additional multiplication of at most k& terms while computing each row of the table for
a join node.

Thus we claim that the complexity stays the same, namely linear in number of nodes, and
exponential only in the primal treewidth.

4 Example

Refer to an example worked out below, see Figure 4 (next page). We fill the tables for each
of the nodes of our nice tree decomposition according to the algorithm above.

After the table of the root is filled, we can sum all n(¢, ) entries in this table, and this will
preciely be the WMC of F'.

5 Future work

This technique looks promising for studying more general objects, not necessarily CNFs. In
particular, we will work on applying these methods to WBF compiled using methods in [1].
Also, we will see if similar results for dual graph and incidence graph are possible.

We may also study [2] in more detail to see which nice tree decompositions yield better
bounds in terms of constant factors in the funtime.
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Figure 4: Algorithm written out for a particular F
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